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Momentum- and energy-resolved scattering
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Measures a correlation function, S(q,»)

( See talk yesterday by Toby Perring )




A new approach: Free Electron Lasers
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Can—for the first time—study ultrafast
dynamics with a momentum-resolved probe

Questions for today:

®* How is this different from inelastic scattering techniques, which are also said to
measure dynamics? That is, how are time and frequency related?

® Where does scattering come from, and how does it measure dynamics anyway?
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Electron in an EM field (classical)

Can define the fields in terms of potentials:
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Classical motion described by the Lagrangian

L=K-V=imi+ep—S%.A"
2 c

The canonical momentum is
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This allows one to define the classical Hamiltonian
i ) Result is the Lorentz
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Electron in an EM field (quantum)

The Hamiltonian is now an operator. Photons are massless so we have to use second
quantization: 1 3 A 8
H=H., +H +H.

interaction

electron
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Where i (x,t) annihilates an electron at position x and time t.
The vector potential is an operator that creates or annihilates photons:
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Multiplying everything out gives fundamental interactions between electrons and

photons:
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Scattering

Scattering takes place when these interactions evolve a photon from an initial state to
a final state, with a corresponding change in the electronic subsystem:
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What does this is the time-evolution operator:
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“Nonresonant” x-ray scattering
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“Resonant” inelastic x-ray scattering (RIXS)
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(J. van den Brink, after the coffee break)




Cross section for x-ray scattering

The differential scattering cross section comes from Fermi’s golden rule
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where counting states in a box of volume V provides the
density of final states:

O’N oV
O0Q0E  871°hc

(O VE (for one incident photon)

Cross section for nonresonant x-ray scattering
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k = kf — ki =0, —o dynamic structure factor — what is it?




S(g,w) and the Van Hove function

Cross section:

o’c(q0) L, w, [ « |2
———2=r (g, ) S(q,w)
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Assuming we are in thermodynamic equilibrium, S has the form

o—fwm kT
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This is the so-called “dynamic structure factor.”

S(g,w) is the Fourier transform of the Van Hove function, G(x,t), which is the space-
time correlation function for the electron density:

S(q, ®) = fdx dt G(x,t)e @

where

G(x,1) = de, dt’<ﬁ(xl’t,) ﬁ(x, Xt +t)> What does this have to

: o
The brackets denote a QM thermal average: do with dynamics?
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Fluctuation-Dissipation Theorem

0 fluctuati
1 1 uctuation-
S(q,w) = ——l_ewlm[l(q, )] — dissipation

4 theorem
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Describes how charge propagates in a system:

* Phonons » Excitons . Et
* Plasmons * Electron-hole pairs C.




Green’s functions or “Propagators”

Dynamics is described by a propagator

K(x,t;x',t")

Electrons:

G(x,t:x,t) =i/a{0{y (x,1),¥  (x,t)}|0) Ot 1)

Density:
(X, GX1) =i/ 7 (0[] p(x,1), p(x',1)][0) Ot 1)
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Some translational symmetry: (k, »)

Frequency / momentum

representation is more illuminating. Re[o]
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®* Best way—in a many-body
system—to define what is a
“particle”




View propagator in real time?

Crazy idea: Can we Fourier Transform IXS
data and make real time movies?

Why? Should be incredibly easy to get attosecond time resolution:

AE-At~§ At~100as = AE~T7eV

Can we FT to observe a propagator directly?

Answer: NO

| | ( Oops
S (qa C()) — _; 1— e_hw/kTLIm [Z(qa 0))] }

Our information is incomplete. Cannot Fourier transform with only the
imaginary part.”

*This is what Fermi called the “inverse scattering” problem.




The phase problem reexamined

Central Dogma of x-ray crystallography:
2
1(q) < | p(q)|

Periodic system (i.e., a crystal):

pI=2P8 " g |l
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FILTER

® Phase problem is solved by
incorporating constraints (Hg or

KcsA channel Se atoms)

R. MacKinnon ® This is the basis for the field of
Chem. Nobel structural genomics

Prize, 2003 * Based on classical scattering
theory. All scattering is elastic.

D. A. Doyle, et al., Science 280, 69 (1998)




The phase problem reexamined

Van Hove function:
1
S(q.w)=—[(n
ns
What we think we measure:
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More general formulation of the phase problem:

0

11 > (Im[yk,o)] .

® x(x,t)=0fort<0
® Raw spectra do not really describe dynamics — no causal information

¢ Causality is the constraint. Must assign an arrow of time to the problem.

® Rise of entropy < arrow of time




What if the system is inhomogeneous?

Assume it’s periodic:

x(X,X,,t 1) = —%<[/A)(X2,t2),,5(xl,tl)]>9(t2 -t)

Z(kpkzaw) :Z(klaG_kpw)

In regular scattering, we only measure the
diagonal (G=0) components of this matrix:

S(k, @) = ———!

T 1 . e—ha)/kT

Im| y(k,—k, 0)]

Naively Fourier transform and you get a spatial
average:

y(r,t)= f dr’ y(r',r' +r,t)
[P. A., et al.,, Phys. Rev. B 80, 054302 (2009)]

If the system is homogeneous, this is OK. If not, things get even better...
but let’s start with the homogeneous case.




Plasma oscillations in water
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¢ 8 valence electrons / molecule
°*p=1glcm3 = n =0.20 e/A3
* w, = V(4nne?/m) = 16.6 eV

Transferred Energy (eV)

1 2 3
Transferred Momentum { A1)




Problems

Problem #1:

Im[y(k,)] must be defined on infinite  interval for continuous time interval

k=0.583 A-1

—— Im[x(k®)] |
Extrapolation |
Relx(k.w)] -

Solution:

Extrapolate.

k =4.95 A-1

—o— Im[y(k,m)]
Extrapolation
Re[x(k,m)]

Transferred Energy (eV)
Side effects:

® y(x,t) defined on continuous (infinitely narrow) time intervals.

® Time “resolution” Aty = n/Q

max

* Q.. plays role of pulse width.




More Problems

Problem #2:
Discrete points violate causality

Im[y(k,®)] must be defined on continuous o interval. Periodicity incompatible with
causality.

Solution:

Interpolation (i.e., add data)

0
x(k,t) = / i [sin(wt) Imx(k,w) + cos(wt) Rex(k,w)]
x T

2 >0
Kt = = [ dosine) Fmx(h,)
0

,FT *,

Side effects:
® v(x,t) defined forever. Vanishes for t < 0.
® Repeats with period T = 2n/A®

® Ao plays role of rep rate




Disturbance from a point source in water

- -6
clipped at 1 A Ax, = 0.635 A

P. A, etal, PRL, 92, 237401 (2004)




Frame-by-frame .

t=16.45 as --tlf)las
e ‘

() )
Units A® 0.005 A6 Aty =20.7 as

clipped at 1 A® Axy = 0.635 A

t =329 as

® Events transpire in 350 as — light travels 100 nm in vacuum
® Causality < Analytic properties < Rise of entropy < Arrow of time




Attosecond imaging with IXS

» » . lon solvation dynamics (At = 26 fs)

R. Coridan, et al., PRL 103, 237402 (2009)
(a) t=200fs (b) t=400fs (c) t=600fs

“Birth” of an exciton in LiF (At = 20.6 as)
P.A. et al., PNAS 105, 12159 (2008)




Effective fine structure constant of graphene

a,(k,)=a, [1+V (k) y(k, )]

Charge propagator. Gives
screening correction to a.

At = 10.3 attoseconds (1017 sec), Ar = 0.2 A




Effective fine structure constant, o, (k, )
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a; (07,0)= }{inga; (k,0)=0.14+£0.092=1/7
J. P. Reed, et al., Science 330, 805 (2010)




New results

Measured and calculated |a*|

—=— Measured «|1 + Vap(g)x2p(g.0)| (New)
—=— Measured a1 + Vap(g)xzp(g,0)| (Old)
—&— Measured o /|1 — Vap(g)F(g)Ilap(q,0)d| (New)
&— Measured « /|1 — Vap(g)F(q)Iap(g,0)d| (Old)
a/ |k, =1 (1 — Vap(g)TLap(g, 0))]
(II-band RPA without interlayer hopping)
a/|kn,<1(1 — Vap(q)an(g, 0))]
: (II-band RPA with interlayer hopping)
a /|& Ny — €20 (g, 0)
- (II-band RPA with interlayer hopping)

05 1
Momentum (A1)




X-Ray Scattering, Finally Done “Correctly”

We need the off-diagonal terms. Can we measure them?

Z(Xlaxzatl _tz) = _é<[/3(xzat2)>/3(xpt1)]> H(tz _t1)

1k .k,,0)= 7Kk, G-k,w) (periodic case)

Yes ... X-ray standing waves:

Bragg
reflection
monitor

J. A. Golovchenko, et al., PRL 46, 1454 (1981)
W. Schulke, U. Bonse, S. Mourikis, PRL 47, 1209 (1981)
W. Schulke, A. Kaprolat, PRL 67, 879 (1991)




X-Ray Scattering, Finally Done “Correctly”

“Incident” photon is in a superposition of momenta:

i) = (910}, 0, + G20),0,€7) Im) . ) = gy I2)

kooo

Now do scattering:
4 A - A 2 N
H=Hy+ - ‘ /a;'TA.p-z_-’- dx + : /,{)A dx
2mce 21m.c?

The cross section contains interference terms:

Ao e2 20.,‘3 T T ’ T ,
1540~ \ma ) o 9116 @l"S(a1.w) + 03185 - &[S (g5, w)

= ?:"r' - AW ;— Y s |
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— Phase of the standing

: —iy ok 2 - AR\ wave. Requires
+g192¢" (€3 - €1)(€3 - €5).5(qo. QI-"*"” - coherent wave field.

Interference terms are off-diagonal dynamic structure factor

S(q1,q9,w) = me (m|p(qq) |n) (n| p(—g3) |m) 6(Aw — E, + Ep)

mn.m

Generalized fluctuation-dissipation theorem:
1 1 Y. Gan, A. Kogar, P. Abbamonte,

S5(41: a9 w) = —— 75— (g1 =42, w). Chem. Phys. 414, 160 (2012)




“Crystallography for the collective excitations”

Asymmetric
monochromator

Y. Gan, A. Kogar, P. Abbamonte, Chem. Phys. 414, 160 (2012)




“Crystallography for the collective excitations”

® Complete reconstruction of % (l‘1 N o ,t)

® Angstrom spatial resolution

* Attosecond time resolution

X

<

d

e,

Y. Gan, A. Kogar, P. Abbamonte, Chem. Phys. 414, 160 (2012)




“Crystallography for the collective excitations”
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