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Momentum- and energy-resolved scattering

Measures a correlation function, S(q,)

( See talk yesterday by Toby Perring )

BL43LXU IXS spectrometer 
at SPring8

SEQUOIA spectrometer at SNS



A new approach: Free Electron Lasers

Can—for the first time—study ultrafast 
dynamics with a momentum-resolved probe

Questions for today:
• How is this different from inelastic scattering techniques, which are also said to 

measure dynamics? That is, how are time and frequency related?
• Where does scattering come from, and how does it measure dynamics anyway?



Example of  vs. t : the dielectric function, ()
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Time relationship is nonlocal:

e is a Green’s function 
 dependence  retardation



Electron in an EM field (classical)

(Lorentz force 
law)
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* Gaussian units

Can define the fields in terms of potentials:

Classical motion described by the Lagrangian

The canonical momentum is
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This allows one to define the classical Hamiltonian
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Result is the Lorentz 
force law:

Hamilton’s equations give the equations of motion:
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Electron in an EM field (quantum)

(Lorentz force 
law)

The Hamiltonian is now an operator. Photons are massless so we have to use second 
quantization:
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Where            annihilates an electron at position x and time t.  ˆ ( , )t x
The vector potential is an operator that creates or annihilates photons:
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Multiplying everything out gives fundamental interactions between electrons and 
photons:



Scattering

“Nonresonant” x-ray scattering

(Lorentz force 
law)

“Resonant” inelastic x-ray scattering (RIXS)

Scattering takes place when these interactions evolve a photon from an initial state to 
a final state, with a corresponding change in the electronic subsystem:
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What does this is the time-evolution operator:
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(J. van den Brink, after the coffee break)



Cross section for x-ray scattering

Cross section for nonresonant x-ray scattering
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The differential scattering cross section comes from Fermi’s golden rule

where counting states in a box of volume V provides the 
density of final states:

dynamic structure factor – what is it?



S(q,) and the Van Hove function
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This is the so-called “dynamic structure factor.”
S(q,) is the Fourier transform of the Van Hove function, G(x,t), which is the space-
time correlation function for the electron density:

Cross section:

Assuming we are in thermodynamic equilibrium, S has the form
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The brackets denote a QM thermal average:
What does this have to 
do with dynamics?



Fluctuation-Dissipation Theorem

(k2,2)

(k1,1)

Retarded density 
Green’s function

fluctuation-
dissipation 
theorem

Describes how charge propagates in a system:
• Phonons
• Plasmons

• Excitons
• Electron-hole pairs •Etc.
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Green’s functions or “Propagators”
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Some translational symmetry: 
Frequency / momentum 
representation is more illuminating.

• Best way—in a many-body 
system—to define what is a 
“particle”

Dynamics is described by a propagator

Electrons:

Density:

( , )G k



View propagator in real time?

Crazy idea: Can we Fourier Transform IXS 
data and make real time movies?

~
2

E t 
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Can we FT to observe a propagator directly?

Why? Should be incredibly easy to get attosecond time resolution:

Answer: No
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Our information is incomplete. Cannot Fourier transform with only the 
imaginary part.*

*This is what Fermi called the “inverse scattering” problem.

Oops



The phase problem reexamined

2( ) ( )I q q
Central Dogma of x-ray crystallography:

Periodic system (i.e., a crystal):

( ) ie     G r
G

G
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D. A. Doyle, et al., Science 280, 69 (1998)

• Phase problem is solved by 
incorporating constraints (Hg or 
Se atoms)

• This is the basis for the field of 
structural genomics

• Based on classical scattering 
theory. All scattering is elastic.

KcsA channel
R. MacKinnon
Chem. Nobel 
Prize, 2003



The phase problem reexamined
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• (x,t) = 0 for t < 0

• Raw spectra do not really describe dynamics – no causal information

• Causality is the constraint. Must assign an arrow of time to the problem. 

• Rise of entropy  arrow of time

More general formulation of the phase problem:
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What if the system is inhomogeneous?

Assume it’s periodic:
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In regular scattering, we only measure the 
diagonal (G=0) components of this matrix: 

 /

1 1( , ) Im ( , , )
1 kTS

e   
   


k k k

Naïvely Fourier transform and you get a spatial 
average:
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If the system is homogeneous, this is OK. If not, things get even better… 
but let’s start with the homogeneous case.

[P. A., et al., Phys. Rev. B 80, 054302 (2009)]



– Im[(k,)]   (as/Å3)

• 8 valence electrons / molecule

•  = 1 g/cm3  n = 0.20 e/Å3

• p = (4ne2/m) = 16.6 eV

Plasma oscillations in water



Problem #1:

Im[(k,)] must be defined on infinite  interval for continuous time interval

Solution:

Extrapolate.

Side effects:

• (x,t) defined on continuous (infinitely narrow) time intervals.

• Time “resolution” tN = /max

• max plays role of pulse width.

Problems



Problem #2:

Discrete points violate causality

Im[(k,)] must be defined on continuous  interval.  Periodicity incompatible with 
causality.

Solution:

Interpolation (i.e., add data)

Side effects:

• (x,t) defined forever. Vanishes for t < 0.

• Repeats with period T = 2/

•  plays role of rep rate

More Problems



10 Å

P. A., et al., PRL, 92, 237401 (2004)

tN = 20.7 as

xN = 0.635 Å
Units Å-6

clipped at 1 Å-6

Disturbance from a point source in water 



tN = 20.7 as

xN = 0.635 Å
Units Å-6

clipped at 1 Å-6

• Events transpire in 350 as – light travels 100 nm in vacuum
• Causality  Analytic properties  Rise of entropy  Arrow of time 

0.1 Å-6

0.005 Å-6

Frame-by-frame



“Birth” of an exciton in LiF (t = 20.6 as)
P. A. et al., PNAS 105, 12159 (2008)

Ion solvation dynamics (t = 26 fs)
R. Coridan, et al., PRL 103, 237402 (2009)

Attosecond imaging with IXS



Effective fine structure constant of graphene

 * ( , ) 1 ( ) ( , )g g V k     k k

Charge propagator. Gives 
screening correction to g. 

t = 10.3 attoseconds (10-17 sec)r = 0.2 Å 
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New results



X-Ray Scattering, Finally Done “Correctly”

We need the off-diagonal terms.  Can we measure them?
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Yes … X-ray standing waves:

J. A. Golovchenko, et al., PRL 46, 1454 (1981)
W. Schulke, U. Bonse, S. Mourikis, PRL 47, 1209 (1981)

W. Schulke, A. Kaprolat, PRL 67, 879 (1991)

(periodic case)

Si



X-Ray Scattering, Finally Done “Correctly”

“Incident” photon is in a superposition of momenta:

Now do scattering:

The cross section contains interference terms:

Interference terms are off-diagonal dynamic structure factor

Generalized fluctuation-dissipation theorem:

Phase of the standing 
wave.  Requires 
coherent wave field.

Y. Gan, A. Kogar, P. Abbamonte, 
Chem. Phys. 414, 160 (2012)



“Crystallography for the collective excitations”

Y. Gan, A. Kogar, P. Abbamonte, Chem. Phys. 414, 160 (2012)



“Crystallography for the collective excitations”

• Complete reconstruction of 
• Angstrom spatial resolution
• Attosecond time resolution

1 2( , , )t r r

Y. Gan, A. Kogar, P. Abbamonte, Chem. Phys. 414, 160 (2012)



“Crystallography for the collective excitations”

• Complete reconstruction of 
• Angstrom spatial resolution
• Attosecond time resolution
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Y. Gan, A. Kogar, P. Abbamonte, Chem. Phys. 414, 160 (2012)


