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GOALS AND OUTLINE

The behavior of quantum systems can be imaged in
real-time by measuring dynamical correlation functions.
Classically calculating these functions is extremely diffi-
cult; however, they can be readily measured on Quantum
Computers. My goal is to explicitly calculate the dynam-
ical correlation functions for several ferromagnetic and
antiferromagnetic geometries using LIQU4|)’s Hamilto-
nian Mode simulator and show their agreement with the
physics of the Heisenberg model.

I will begin with an overview of what these correlation
functions mean, especially in the context of quantum spin
systems, and how they can be calculated on a quantum
computer. Then, I will move on to their circuit’s time
complexity, susceptibility to error, and the challenges I
needed to overcome in order to implement the circuit in
LIQUi|). I will conclude with the results of the calcula-
tion and the physics they contain.

I. INTRODUCTION

Among the general public, the excitement surrounding
quantum computing has centered around Shor’s prime
factorization algorithm and its implications for certain
three-letter agencies. However, quantum computing was
originally envisioned as a much more powerful method of
simulating complex many-body quantum physics com-
pared to classical computers'. Simulating these complex
systems means an unprecedented understanding of the
chemistry of large molecules, the physics of solid-state
materials, and even deep theoretical concepts in Quan-
tum Field Theory'?. Additionally, there are also stun-
ning consequences for those who do not care for the study
of nature; the net worth of the different industries that
would radically change with access to even a 50-100 qubit
computer is somewhere in the trillions of dollars?.

The question then arises, what properties does one
need to know to 'understand’ a quantum system? Some
of the most important quantities of interest are the en-
ergy and symmetries of the eigenstates, phase transitions,
physical properties (e.g. heat capacity), degeneracies of
the ground state, transport properties, and topological
features. Despite addressing widely different aspects of
the underlying physics, all of these quantities can be stud-
ied through taking expectation values (i.e. quantities
such as (| Al]y)) of various operators on the eigenstates.
In fact, some of these quantities, like order parameters of
a phase transition, are expectation values by their very
definition. For example, determining how much power

is lost in a transistor boils down to taking expectation
values of current operators with the Kubo formula®.

In addition to being an important theoretical tool for
understanding physical systems, expectation values are
how we interact with nature. Experimental techniques
including Angle-resolved Photoemission Spectroscopy,
Neutron Scattering, X-ray Scattering, Scanning Tunnel-
ing Microscopy, Raman and Infrared Spectroscopy, etc.
all measure different expectation values. This means that
using quantum computers to calculate expectation val-
ues is not only valuable for improving conceptual under-
standing, but also produces verifiable predictions that
can be checked by many different types of experiments.

One may naively wonder, if quantum computers have
direct access to the wavefunctions, why not record the
wavefunctions themselves instead of measuring expecta-
tion values? Surprisingly, measuring complete wavefunc-
tions, something known as a tomography, is neither ef-
ficient nor useful. In fact, tomographies are so incredi-
bly inefficient that a quantum computer provides almost
no improvement over classical computers in calculating
them?. Ignoring the efficiency problem, even if the full
wavefunctions were available, they would contain roughly
2N+1 numbers for N qubits, making them so large that
one would end up taking expectation values just to un-
derstand them! Thus, to translate quantum systems into
something we can understand, there is no way around
taking expectation values.

I.1. Correlation Functions

Typically, one does not just take a single expectation
value of a quantum state and call it a day. Instead, it
is more useful to take expectation values as a function
of some physical parameter. Returning to the example
of heat dissipation in transistor, determining how much
heat is dissipated as a function of the transistor switch-
ing speed is extremely important for the semiconductor
industry. Technically speaking, parameter dependent ex-
pectation values are generally referred to as correlation
functions. In the case that one of these parameters is
time, the function is termed a dynamical correlation func-
tion.

In this project, I studied spin systems, so naturally I
needed to find the appropriate correlation functions to
calculate. Within spin systems, the first property to de-
termine is whether the system is ferromagnetic or not.
Ferromagnetism can be easily determined by adding up
the expectation value of the local vector spin at each po-



sition in space, as shown in Equation 1.
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Here §(F) is the spin vector operator acting at position
7, and (S(F)) is its correlation function. One can under-
stand (S(F)) as a map of how the spins are aligned locally
in space, and the sum as giving the total magnetization.
A finite value of this sum would indicate the ground state
has a net magnetic moment and is ferromagnetic (or fer-
rimagnetic).

One can also look at the dynamical correlation function
(S(F,t)) to obtain a movie of how, if at all, the spins in
the system are changing direction in time.

Multiple operator correlation functions, such as
(S(r', ') - S(F,1)), go a step beyond their single opera-
tor versions and contain information about how different
parts of the system interact with each other. As an exam-
ple, for those interested in developing electronics based
on spin, knowing how the rotation of a spin at a given
place and time (r,t) affects another spin at some other
place and time (1, ¢) is vital for determining when spin
currents can flow easily, and when they would just dissi-
pate into heat.

To get an understanding of what a movie of a multiple
operator dynamical correlation function would look like,
consider the analogy of throwing a small pebble into a
still pond at some position r at time tg. The pebble would
make a splash, and waves of water will cause the water
level at other positions r’ to oscillate. After long enough
time however, the water level will settle back down and
the waves will have dissipated into random water mo-
tion. One can imagine how the results would be differ-
ent for gelatin, where not only would the pebble cause
waves to form like the case of water, but the gelatin as
a whole would vibrate, which water does not. Though
the analogy is crude, similar behavior occurs for ferro-
magnets and antiferromagnets, because antiferromagnets
have some excitations that simply do not exist for ferro-
magnets. By measuring a multiple operator dynamical
correlation function, you can determine just what the
system’s excitations are, and how they affect the inter-
actions between particles in the system.

In this project, I mainly studied a dynamical correla-
tion function that embodies the ‘pebble’ concept for spin
systems, and is defined in Equation 2.

<S+—(i’j7tvt/)> = <S+(j7t/)s—(i7t)> (2)

Here, S = S, %45, is the spin raising(lowering) opera-
tor. This correlation function is known as the transverse
correlation function. Though its appearance is daunt-
ing, the transverse correlation function answers a rather
simple question: if a spin-up state | 1) is lowered to a
spin-down state | |) at position and time (4,t), what is
the probability that the | |) state propagates to (j,t')?
For spins that are static (possibly because of an external

field), there will be no probability for propagation. On
the other hand, for strongly-coupled systems, propaga-
tion can occur in many different channels at once.

II. MANY-BODY SPIN SYSTEMS

Before continuing, it is instructive to review some of
the physics behind the ferromagnetic and antiferromag-
netic systems I studied in this project.

Classically, magnetic systems, such as iron, are imag-
ined as lattices of small bar magnets pointing in the
same direction, each interacting with the other through
a dipole-dipole force. Astonishingly, the origin of mag-
netism at the quantum level is not from electromag-
netism, but instead comes from spin statistics! The
core idea is simple: in order to avoid being in the
same state, electrons in a material are forced to align
their spins and/or angular momentum in parallel, anti-
parallel, or somewhere in between the two. This forced
(anti-)alignment is why magnetism is an important as-
pect of strongly-coupled quantum systems.

The Heisenberg model shown in equation 3 is one of
the simplest models of quantum magnetism, yet for dif-
ferent geometries and values of the parameter J it con-
tains the exotic spin states that could be used as topolog-
ical quantum computers or to explain high-temperature
superconductivity®.
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A useful property of the Heisenberg model for the pur-
pose of this paper is its time invariance. This property
means one time index is redundant for any two or more
operator correlation function, as shown in Equation 4.
The geometries I used also had translation invariance,
which is to say that every site couples to the other in the
exact same way. Translation invariance acts very simi-
lar to time-invariance, and makes one position index re-
dundant. So instead of calculating (Sy_ (3, j,t,t')), only
(S4+-(i=0,5,t =0,t' —t)) =2 (S4y_(4,t")) is needed.

(A(t)B(t)) = (A(t' = t)B(0)) = (A(T)B(0))  (4)

There are two distinct regimes of the Heisenberg model
depending on the value of J. For J < 0 spins will try to
align, resulting in a ferromagnet, and for J > 0 spins will
try to anti-align, resulting in an antiferromagnet.

I1.1. Ferromagnetic Heisenberg Systems

The ferromagnetic Heisenberg model in all geometries
has the classically expected ground state of all spins
aligned in the same direction (e.g. | 11 -+ 1)). The
direction of the spins is usually called the longitudinal
direction, and any perpendicular direction is considered
to be transverse.



In the ferromagnetic case, the longitudinal correlation
function (S,,(i,t)) is simply a constant. This is simply
the statement that the spin at any site is aligned with the
spin of any other site forever in time. On the other hand,
the transverse correlation function (Sy_(4,t)) is far from
trivial.

To get an intuitive feel for what to expect, recall that
the operator Sy act to create a | ) and | |) state re-
spectively. This means the system goes from | 11 - 1) to
| 14 - 1). This new state is no longer an eigenstate of
the Heisenberg Hamiltonian. Having just one spin mis-
aligned is unstable; so the system spreads the localized
spin misalignment over all the spins, giving each spin a
much smaller misalignment. The spreading of a single
misalignment is carried by spin waves excitations known
as magnons, and they underpin the field of magnonics.
Thus, we should expect to see the initial spin flip create
waves that move in all directions at a finite speed related
to the coupling constant J*.

I1.2. Antiferromagnetic Heisenberg Systems

While the ground state of the ferromagnetic regime is
rather simple, the Heisenberg antiferromagnet is highly
dependent on geometry. Classically, one would expect
that the ground state would be the Neél state with anti-
aligning spins | 414 -~ 11). However, this state is not an
eigenstate, and for this reason the Neél state is said to
be altered by 'quantum fluctuations’.

Because the ground states depend on geometry, the an-
tiferromagnetic correlation functions do as well. In gen-
eral, the local spin (S(F) will be aligned between all sites,
and will alternate in sign like classical Neél order. An im-
portant difference from Neél order however, is that quan-
tum fluctuations will decrease the magnitude of (S(F))
and cause it to be time-dependent.

The transverse correlation functions also takes a dif-
ferent form than the ferromagnetic case. While magnons
are still present like in the ferromagnetic regime, so-called
‘spinons’ also exist. These spinons are best illustrated by
example. Starting from the Neél state | TJ1J1141), flip-
ping a single spin causes three spins to be aligned in a row
| TALLI1dT). This state is not stable however, and these
spins can move to give | TLJT/141). These spinons are
effectively domain walls between two Neél states, and can
propagate in the system much like conventional particles
do in free-space.

III. METHODS

II1.1. Measuring Correlation Functions

By design, quantum computers only allow for two
types of operations: unitary rotations, and measure-
ments. In effect, the only expectation value that can
be obtained is that of (o,), because it is simply the dif-
ference in the number of times | |) and | 1) are measured.
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FIG. 1. General circuit for measuring linear sums of unitary
operators. The image is taken from Collins? and originally
from Somma®.

This raises the obvious question of how generic expec-
tation values can be evaluated, considering that most op-
erators are non-unitary. This limitation may seem like an
insurmountable barrier; however, there is mathematical
theorem stating that any complex matrix can be written
as a linear sum of at most two unitary matricies®. So the
problem of taking non-unitary expectation values is re-
duced to unitary expectation values, as the results could
be scaled and added with impunity after the fact.

The most general statement of the problem is:

“Is it possible to measure the real and imaginary parts
of the expectation value of a linear sum of 2V unitary
matrices Z?J:Vo a; Ul V; for Z?J:Vo la;|? =177

This problem can indeed be solved?%”, and requires N
ancilla qubits set up in the circuit shown in Figure 1.
The circuit essentially works by first rotating the ancilla

qubits from |00 - - - 0) to ZfN ' a;]i)|+), denoted by the
gate F. The circuit then applies N-qubit controlled uni-
tary operators for each a;|¢). Finally, measuring (o,) and
(oy) gives the real and imaginary parts of the sum. This
last measurement can be done by rotating the first qubit
into the = and y bases and measuring (o.). As an inter-
esting sidenote, in the process of actually implementing
this circuit, I found that the textbook reference? on this
circuit not only skipped the application of the E gate,
but also added two erroneous steps at the end that can
only be understood as typos.

An immediate problem with the scheme in Figure 1
is that it collapses the system wavefunction into an un-
known state upon measurement. If the wavefunction was
obtained with an annealing procedure, the whole anneal-
ing process would need to be repeated for each measure-
ment. One alternative is to use a combination of phase
estimation and the Hellmann-Feynman theorem to get
around wavefunction-collapse. The Hellmann-Feynman
theorem is a very elementary result which states that for
a Hamiltonian of the form H(X) = Hy + MO, Equation 5
holds®.

A4~ 10 6
A=0

Using this theorem, instead of measuring the operator



directly, one can use phase estimation on U(\) to obtain
E(X\) and numerically compute the derivative. Phase
estimation not only measures the energy of the state,
but, for enough ancilla qubits, collapses the wavefunc-
tion to the exact eigenstate corresponding to that en-
ergy. Thus, phase estimation allows for non-destructive
measurement. As an aside, because AO needs to be Her-
mitian, in general operators will need to separated into
Hermitian and anti-Hermitian parts to get a full complex
expectation value.

There is a difficulty in using this approach, however,
due of its unsuitability for dynamical correlation func-
tions. This difficulty arises because adding terms to
the Hamiltonian of the form UT(¢)OU(t), where U(t) =
exp(—%Hot), is highly nontrivial. In general, if one knew
how to compute UT(t)OU(t), there would be no need to
measure its expectation value in the first place.

II1.2. Time Complexity

Before attempting to use either method for measuring
correlation functions, the time-complexity must be as-
sessed. For the scheme in Figure 1, it is useful to break
the problem into two pieces.

The first piece is the number of repetitions needed to
get measurements with absolute precision +¢. For a sin-
gle ancilla measurement, the results will have a binomial
distribution, requiring O(%) iterations for the desired
precision.

The second is the number of unitary time steps needed.
If the correlation function is to be evaluated at T' time
points and for n values of its parameter, O(n(1+2+...+
T)) = O(nT?) time steps will be needed for each opera-
tor. So for a m-operator dynamical correlation function,
O(n™T?™) time steps are needed. If the system has a
time-independent and translationally-invariant Hamilto-
nian (e.g. the Heisenberg model on a ring), the number
of time steps drops to O(n™~1T2m=1),

The total number of time evolutions then scales as
O(£n™T?™), where K is the constant number of time-
steps needed to anneal the system to the proper ground
state in the first place. For a fixed precision and number
of operators, the circuit scales polynomially in the uni-
tary time steps it needs. The exponential scaling in the
number of operators may seem alarming, but it is to be
expected, as the sheer number of parameters in a multi-
operator correlation functions also scales exponentially.

If however, there is an efficient method for calculating
and applying U?" | the situation changes. Assuming these
matricies can be calculated for a 2™ such that 27+t —1 >
T, the number of time steps would be 142+ .. +log,(7T)
or O(log3(T)). This can be seen by simply writing 7" in
binary and applying the appropriate U?" for each digit.
If this speedup is possible, then the time complexity will
be O(Ln™logy™(T)).

On the other hand, the phase estimation and
Hellmann-Feynman theorem scheme scales rather differ-
ently. To resolve an energy difference on the order of

A, the number of qubits required for phase estimation is
roughly log, (). If U?"(X) can be efficiently computed
beforehand and has the same cost as U()), O(logy (%))
time evolutions are needed. In the general case of m oper-
ators at n points the complexity becomes O(n™ log,(5)).
If there is no efficient method of obtaining U?"()), then
O(”Tn) unitary time steps are needed. In either case,
there is a significant speedup in using the phase estima-
tion method. However the downside for small system
sizes is the number of additional qubits needed, which
could be around ten for reasonable accuracy. Combining
this downside with the unsuitability for dynamic correla-
tion functions, the method described in Figure 1 had to
be used for actual measurements in my project because
the LIQUi|) simulation is extremely slow as the number
of qubits grow.

ITI1.3. Error Susceptibility

For either of the aforementioned methods, the main
error source will come from controlled and uncontrolled
unitary time steps. In particular the circuit would be
most susceptible to error when measuring correlation
functions at long times for the first method, or with too
high precision for the second method.

In addition, measuring correlation functions is intrin-
sically very sensitive to depolarizing noise, as adding a
single X,Y, Z gate for any qubit will effectively change
the operators involved in the expectation value. For ex-
ample, in the case of (S.;.(i = 0,7,1)), an additional X
gate at the ¢ = 0 position would completely undo the
first .S, operation and cause the expectation value to be
identically zero for a ferromagnet. The net effect of these
errors would generically be to bias expectation values to-
wards zero.

For translationally invariant systems, a more stable
computation would be the sum of (S,.(i = 0,7,t)) over
all equivalent sites 3" (Sy (i, 5, 1)) = N(Sp(i = 0,,1)).
By computing a sum, polarizing errors may be circum-
vented provided much less than N occur. In this sense,
the second method is less fatally susceptible to polariz-
ing errors because phase estimation can bring the system
back to the correct eigenstate, but there is the additional
worry that the state will move to another energy level if
errors are allowed to accumulate.

In light of the weakness of these two methods to er-
rors, error correction is absolutely necessary to reliably
measure correlation functions with a quantum computer.

IV. IMPLEMENTATION IN LIQUq|)

The implement a generic correlation function calcula-
tor in LIQU4|), I focused on two aspects: building utili-
ties to create arbitrary lattice Hamiltonians, and creating
the expectation value measurement circuits. The utili-
ties I needed were a matrix exponentiator to allow the
Spin class to take in arbitrary terms, a geometry class



that would handle the qubit coupling configurations, and
an integrated noise extension to the Spin class. The
measurement circuits required a helper function to de-
compose complex matricies into linear sums of unitary
matricies, building the circuit in Figure 1, and building
the circuit for the Hellmann-Feynman method. In effect,
because LIQUi|)’s Spin class is able to handle matrix
optimization, trotterization, and annealing schedules, it
handled all of the heavy lifting of doing the actual quan-
tum computation.

IV.1. Running Arbitrary Hamiltonians

The Spin class is fundamentally designed to handle ar-
bitrary Hamiltonians through the SpinTerms class. How-
ever, SpinTerms requires a pre-existing exponentiation of
each matrix and cannot accept Hermitian matricies on
their own. Matrix exponentiation is very simply accom-
plished by diagonalizing the relevant matrix, something
that is not very expensive for the small local terms that
are used in most Hamiltonians. Thus, I implemented a
generic rotation matrix by diagonalizing the Hamiltonian
term with .NET’s Numerics and caching the result.

Apart from the matricies of arbitrary Hamiltonian
terms, deciding what qubits they couple is equally impor-
tant. To avoid having to keep track of qubit IDs, I cre-
ated a geometry class to handle the qubit coordination.
This class simplifies moving a given Hamiltonian between
geometries, adding terms beyond nearest-neighbor cou-
pling, breaking/enforcing translation symmetry, etc.

Finally, because the Spin class does not have built-
in Noise functionality, I added simple methods to do so.
While I was able to implement depolarizing error, I was
unable to configure the amplitude dampening with the
unitary evolution. In principle, error correction could be
added as well, but it currently would have limited func-
tionality because of the large number of physical qubits
needed for each logical qubit.

IV.2. Correlation Function Circuits

To make the circuit in Figure 1 handle the expecta-
tion value of any complex matrix, a four-term unitary
decomposition method was used®. This method requires
computing the singular-value decomposition of the orig-
inal matrix along with diagonalizing its Hermitian and
anti-Hermitian parts. Again, these matrix operations
were implemented with the .NET Numerics. Although
this procedure is generically very expensive, the opera-
tors involved in expectation values usually act on only
a few qubits, so their sizes are limited, unlike the full
Hamiltonian.

Because LIQUi|) is a fundamentally classical simu-
lator, the circuit in Figure 1 can be implemented in
O(n™T™) time instead of O(Zn™T?™). This speedup
is possible because the Ket.Probs method allows one to
obtain the result of a measurement perfectly without per-
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FIG. 2. Surface plot of the absolute value of (S1_(3, j,t)) for
a ferromagnetic 17 qubit ring and ¢ = 8. The initial distur-
bance propagates away like a coherent wave, as expected for
magnons.

forming it. So instead of the measuring and collapsing the
system, I called Ket.Probs and then applied the adjoint
of all the applied gates to undo them and move to the
next the timestep. Actually implementing the measure-
ments would require much more computational time and
only introduces uninteresting statistical error bars. Cal-
culating (S, (4, 7,t)) in this semi-classical way for fixed 4
on a 17 qubit ferromagnetic chain with 3500 time steps
took one hour running on an i5-Skylake processor. Sam-
ple input and output for the scripts is available in my
Dropbox folder here.

Implementing the phase estimation method was also
rather simple. The unitary matricies U(\, O) were cre-
ated by adding e*C to the annealing schedule of the
Spin object used. Measurement could be made exact
by using the Spin.EnergyExpectation() method; how-
ever, because the Hellmann-Feynman method has trou-
ble working for dynamical and multi-operator correlation
functions, I did not use it in any simulations.

V. RESULTS

Using the correlation function calculator circuit, I ob-
tained the dynamical local spin <§(z, t)), transverse cor-
relation function (S _(4,t)), and longitudinal correlation
function (S, (j,t)S.(4,0)) for ferromagnetic and antifer-
romagnetic rings, square lattices, and hexagonal lattices.
All of these datasets are available at my Dropbox folder”.
For the sake of brevity however, I will only discuss the
ring geometry and mention the square lattice case in
passing. Because the Heisenberg model, as shown in
Equation 3 has only one energy scale, only the sign of
J matters, so all datasets were taken with J = +0.01,
h =1, and scaled so S; = o;.


https://www.dropbox.com/sh/edagfp4le07a52i/AACrL68HhgpHG8QdI6twFo9ra/Figures?lst=&preview=screenshot.png
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FIG. 3. This plot has the same data as Figure 2, but with
three depolarizing noise events. The first event at ¢ ~ 60 is
enough to spoil the correlation function.

V.1. Ferromagnetic Results

As mentioned before, the ferromagnetic ground state
restricts the local spin and longitudinal correlation func-
tion to be constants, so all the interesting behavior ap-
pears in the transverse correlation function.

Figure 2 shows a interpolated surface plot of the trans-
verse correlation function for 17 qubits aligned in a ring.
The spin flip away from ¢ = 8 visibly propagates out-
wards in both directions and returns because the ring is
periodic, precisely what the was expected for ferromag-
netic magnons. An alternative way to understand this is
that because the initial disturbance is spatially localized,
it excites magnons in all directions and momentum. To
explore the effects of noise, I recalculated (S1_(i,7,t))
with depolarizing errors in Figure 3. The original spin
flip propagates at the very beginning; however, just a sin-
gle depolarizing event around ¢ = 60 completely destroys
the measured correlation function, which is clear proof
of how sensitive the correlation function is to depolariza-
tion.

V.2. Antiferromagnetic Results

As stated in section I1.2, the ground state of the
Heisenberg antiferromagnet is non-classical, so I annealed
from the Neél ground state of the Ising antiferromagnet
over 1000 time steps. To get a clearer look at the spin of
the Heisenberg ground state, I created a video of the local
spin (S(i,t)) = (S.(i,t))2 for a 4-by-4 antiferromagnetic
square lattice that is available here.

The transverse correlation function (S4_ (i, 7,t))is cal-
culated in Figure 4 for a 16 qubit ring with ¢ = 0. While
spin waves still propagate like in the ferromagnetic case,

localized spinons also form from the initial spin flip and
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FIG. 4. Surface plot of the absolute value of (S+_(i = 8,7,t))
for an antiferromagnetic 17 qubit ring. The disturbances are
also much more localized due to spinon modes existing in
addition to the wavelike magnons.

are very distinct features compared to the ferromagnetic
case, confirming what was expected from section II.2.

VI. CONCLUSIONS

Complex quantum systems are at the bleeding edge of
scientific research because of their fundamental impor-
tance and financial implications. With LIQUi|)’s quan-
tum simulator, I was able to record quantum spin systems
in action by measuring their dynamical correlation func-
tions. Along the way, I found errors in the measurement
circuit of a well-known textbook, added new classes and
functions to LIQUi|) to allow for more universal Hamil-
tonian simulation, and analyzed the time complexity and
error-proneness of the mainstream method for calculating
dynamical correlation functions on quantum computers.
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